Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene
نویسندگان
چکیده
Insulin-dependent diabetes mellitus (IDDM) in NOD/Lt mice represents a complex polygenic disease. NOR/Lt is a recombinant congenic strain (RCS) in which limited regions of the NOD/Lt genome have been replaced by genome from the C57BL/KsJ strain. NOR mice are insulitis resistant and diabetes free despite genetic identity with NOD at numerous chromosomal regions containing previously described insulin-dependent diabetes (Idd) genes, including the strongly diabetogenic H2g7 major histocompatibility complex (MHC) haplotype. The present study revealed BKs-derived genome on segments of chromosomes (Chr) 1, 2, 4, 5, 7, 11, 12, and 18, approximating 11.6% of the total NOR genome analyzed. (NOD x NOR)F2 segregation analysis was employed to identify chromosomal regions in NOR containing Idd resistance alleles. IDDM developed in 33% (10/30) of F1 females, and 29.3% (36/123) of F2 females aged to 1 yr. A previously unrecognized diabetes resistance locus (designated Idd13r) strongly protective in homozygous state was identified on NOR Chr 2 in linkage with the Il1 alpha structural gene. The existence of this locus was confirmed by construction of a NOD stock congenic for NOR-derived markers on Chr 2. Our analysis shows the utility of RCS and congenic stocks for the identification and isolation of non-MHC genes with strong antidiabetogenic functions.
منابع مشابه
Insulin autoantibodies are associated with islet inflammation but not always related to diabetes progression in NOD congenic mice.
Susceptibility to diabetes in humans and nonobese diabetic (NOD) mice is believed to arise from the combined effect of multiple genetic loci, resulting in immune-mediated destruction of the insulin-secreting beta-cells. Insulin autoantibodies (IAAs) are often present in humans for years, and in NOD mice for weeks, before the onset of diabetes. We have evaluated the expression of IAAs in NOD mic...
متن کاملResistance alleles at two non-major histocompatibility complex-linked insulin-dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect nonobese diabetic mice from diabetes
Development of diabetes in NOD mice is polygenic and dependent on both major histocompatibility complex (MHC)-linked and non-MHC-linked insulin-dependent diabetes (Idd) genes. In (F1 x NOD) backcross analyses using the B10.H-2g7 or B6.PL-Thy1a strains as the outcross partner, we previously identified several non-MHC Idd loci, including two located on chromosome 3 (Idd3 and Idd10). In the curren...
متن کاملCongenic mapping and functional analysis of a second component of the MHC-linked diabetogenic gene (Idd16)
By using a congenic non-obese diabetic (NOD) mouse strain that possesses a recombinant major histocompatibility complex (MHC) from a diabetes-resistant sister strain, the CTS mouse, we have previously mapped a second component of the MHC linked susceptibility gene (Idd16) to the <11.8centiMorgan (cM) segment of chromosome 17 adjacent to, but distinct from class II A and E genes (Idd1). To furth...
متن کاملCombining mouse congenic strains and microarray gene expression analyses to study a complex trait: the NOD model of type 1 diabetes.
Combining congenic mapping with microarray expression profiling offers an opportunity to establish functional links between genotype and phenotype for complex traits such as type 1 diabetes (T1D). We used high-density oligonucleotide arrays to measure the relative expression levels of >39,000 genes and ESTs in the NOD mouse (a murine model of T1D and other autoimmune conditions), four NOD-deriv...
متن کاملGenome-wide microarray expression analysis of CD4+ T Cells from nonobese diabetic congenic mice identifies Cd55 (Daf1) and Acadl as candidate genes for type 1 diabetes.
NOD.Idd3/5 congenic mice have insulin-dependent diabetes (Idd) regions on chromosomes 1 (Idd5) and 3 (Idd3) derived from the nondiabetic strains B10 and B6, respectively. NOD.Idd3/5 mice are almost completely protected from type 1 diabetes (T1D) but the genes within Idd3 and Idd5 responsible for the disease-altering phenotype have been only partially characterized. To test the hypothesis that c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Experimental Medicine
دوره 180 شماره
صفحات -
تاریخ انتشار 1994